
LLMs In the Qt 
Development Environment



LARGE LANGUAGE MODELS – A PRIMER

2

• LLMs are trained on a wide dataset, usable models are 
measured in Billions of parameters (7B, 30B, 100B…)

• Quantizing possible to lower bit precision, but trade off accuracy 
and reasoning

• Context size matters (and uses a lot of RAM).
• GPT4 and Llama 3.1 support up to 128k tokens (approx. 96k words, fewer for code)

• Prompting instead of programming
• Drive the model towards a goal, but don’t tell it exactly what it should do, or how to do 

it.

• Structured responses force better answers (JSON schemas)

• Field rapidly advancing, new models leapfrog old ones



USE CASE 1:
API CHANGE IDENTIFICATION

Identify changes which modify public APIs

Provides a first-line alert to catch API issues early

Bot process:

• Monitor changes to .h files (but filter known exclusions)

• Feed the diff into an LLM to generically scan for changes

which are “significant to the behavior or usage of the API”

• Summarize changes and post a comment

• Add the “Needs API-Review_[version]” hashtag

• Also add a “API Change cherry-picked” hashtag when the API

changes will be backported.

3



API REVIEW SAMPLE:

Summary:

This change has been identified as having significant 

changes to the public API:

• The QDebug operator<< is now a hidden friend of 

QSslError.

• Changes were made to how the QDebug 

operator<< matches arguments, affecting its usage 

in debugging contexts.

• Users are now required to make explicit 

conversions that were previously implicit, resulting 

in a source-incompatible change.

4



USE CASE 2:
CI FAILURE ANALYSIS

Identify when a change is responsible for the failure to integrate in CI

Bot process:

• Feed the last 1200 lines of the failure log into an LLM (Llama 3.1 8B)

• 2 chunks of 600 lines due to local LLM 32k context limit

• Extract errors with instruction about issues which are not critical errors

• Extract filenames for failed sources or tests

• Retrieve relevant file sources from branch if not modified

• Retrieve change diff

• Run the error, sources, and diff through an LLM with large context (GPT 4o-mini)

• Identify if the change is the likely cause of the failure, or not.

5



PATCHSET 1: Remove noexcept from copy member functions

6

Build error:



7

LLM ERROR ANALYSIS



8

PATCHSET 2



9

LLM ERROR ANALYSIS – CHANGE NOT THE CAUSE



WHAT NEXT?

• Must be non-intrusive

• Probably should not suggest specific changes

• Must be unlikely to have a high false-positive rate

10

NEW IDEAS?

• Investigate Retrieval Augmented Generation

• May be possible to have a database of up-

to-date Qt Documentation for each branch.

• RAG allows the LLM to retrieve authoritative 

source info on-demand, and automatically.

• Larger context is better

• Avoiding chunking means better zero-shot 

analysis, fewer false positives.

• Find ways to give feedback via and buttons 

on bot comments.



THANK YOU

Daniel Smith

daniel.smith@qt.io

11


	Slide 1: LLMs In the Qt Development Environment
	Slide 2: Large Language Models – A Primer
	Slide 3: Use case 1: API change identification
	Slide 4: API Review Sample:
	Slide 5: Use case 2: CI Failure Analysis
	Slide 6: Patchset 1: Remove noexcept from copy member functions
	Slide 7: LLM Error Analysis
	Slide 8: Patchset 2
	Slide 9: LLM Error Analysis – Change not the cause
	Slide 10: What next?
	Slide 11: THANK YOU

