
std::format 
support in Qt
Qt Contributor Summit 2024
Ivan Solovev <ivan.solovev@qt.io>

5 September 2024



▪ std::format support for Qt types
▪ Formatting into QString using std::format-like syntax

Everything is tracked in QTBUG-104651

5 September 2024

Points to discuss

2

https://bugreports.qt.io/browse/QTBUG-104651


▪ Why is that important?
o The users should not provide their own formatters for Qt types, because that has a risk of ODR violation

▪ Current situation
o qfloat16 got support for std::format, it's already in dev (QTBUG-104654)
o Patches for Qt strings are in gerrit (QTBUG-104652)
o Patches for QFlags and Qt enums are in gerrit (QTBUG-125325)
o WIP patch to enable std::format support for all types that support QDebug streaming: 

https://codereview.qt-project.org/c/qt/qtbase/+/587797
It turns out to be quite tricky, because it immediately causes ambiguities with existing std::formatter specializations that are
provided by the standard library.

5 September 2024 3

std::format support for Qt types (1/2)

https://bugreports.qt.io/browse/QTBUG-104654
https://bugreports.qt.io/browse/QTBUG-104652
https://bugreports.qt.io/browse/QTBUG-125325
https://codereview.qt-project.org/c/qt/qtbase/+/587797


▪ Which types should gain support for std::format?
o All value types?
o All types in QtCore (QtNetwork/QtGui/other modules...)?
o All types that have QDebug streaming? Maybe we can provide a convenience macro for that?

▪ Should we provide custom format arguments?
o We could start from simply using existing format arguments, because most of Qt types would be formatted into a string anyway
o Things like QByteArray::toPercentEncoding() might justify custom format arguments
o The tricky part is that I didn't yet figure out how to handle dynamic format specifiers

▪ Implementation details
o For now, I add a separate header for each type or group of types (qfloat16format.h, qstringformat.h, etc...). The idea is that the 

users do not have an overhead of std::format support if they do not need it. But that does not scale well.
o Should we have some "central" header for std::format support?
o How to document std::format support in an understandable way?

5 September 2024 4

std::format support for Qt types (2/2)

https://doc.qt.io/qt-6/qbytearray.html


▪ An alternative to QString::arg() APIs, but with a std::format-like syntax
▪ C++20 (as well as C++23, and most probably C++26) does not support formatting into char16_t-based 

strings, so we need to invent our own way to format into QString
▪ Thiago suggested (in the SG16 ML) to provide a custom OutputIterator and a qFormat() function that will 

wrap std::format_to(). That is now tracked in QTBUG-126873
o The idea is that std::formatter implementation detects the usage of the custom OutputIterator and then can do all the 

optimizations related to memory allocation
o We also hope that we would not need to reimplement the std::formatter<T>::parse() method for that

Questions:
▪ Any other ideas how to implement it?
▪ Is it useful for us now? The code would be C++20 only, so we would not be able to use it inside Qt until 

we require that Qt builds with C++20 only

5 September 2024 5

Formatting into QString

https://bugreports.qt.io/browse/QTBUG-126873


Thank you!

5 September 2024 6


	Slide 1: std::format support in Qt
	Slide 2: Points to discuss
	Slide 3: std::format support for Qt types (1/2)
	Slide 4: std::format support for Qt types (2/2)
	Slide 5: Formatting into QString
	Slide 6: Thank you!

