
QML version ??

Ulf Hermann, November 19, 2019 September 5th, 2024

A retrospective after 5 years



Goals in 2019
› Improve Performance and memory consumption
› Simplify Maintenance of large scale QML projects
› Address Language problems
› Facilitate better Tooling



Achieved by 2024
› Improve Performance and memory consumption
o Performance: Some via compilation to C++
o Memory consumption: No

› Simplify Maintenance of large scale QML projects: Some
o via more rigid (CMake) project structure

› Address Language problems: No
› Facilitate better Tooling: Some – qmllint, qmlformat, qmlls



› QML requires a full JS engine and garbage collector
› Not well suited for very low-end devices
› GC leads to some unpredictable performance characteristics

› Object model built on top of Qt Object model
› Duplicated data structures
› Huge amount of mallocs
› Large initialization overhead (runtime, not compile time)

› Binding propagation is immediate, not synced with consumers
› Leads to duplicated binding evaluations

› Weak typing and runtime resolution of dependencies
› Generated code must be generic

Performance and memory consumption (2019)



› QML requires a full JS engine and garbage collector: unchanged
› Not well suited for very low-end devices
› GC leads to some unpredictable performance characteristics

› Object model built on top of Qt Object model: unchanged
› Duplicated data structures
› Huge amount of mallocs
› Large initialization overhead (runtime, not compile time)

› Binding propagation is immediate, not synced with consumers: invalid
› But: delayed binding propagation does not push changes into the scene graph!
› Leads to duplicated binding evaluations: unchanged 

› Weak typing and runtime resolution of dependencies: improved
› Generated code must be generic
› Type annotations, automatic generation of complete qmltypes, focus on QML modules

Performance and memory consumption (2024)



› Weak typing makes refactoring difficult
› "distributed" versioning (in each QML file)
› QML scoping rules can lead to unexpected side effects
› Integration with C++ type system can be cumbersome

Maintaining large scale QML projects (2019)



› Weak typing makes refactoring difficult: improved
o qmlls can exhaustively analyze well-written qml
o No actual refactoring tools, yet

› "distributed" versioning (in each QML file): improved
o Versioning is optional and discouraged now

› QML scoping rules can lead to unexpected side effects: improved
o qmllint, qmlls warn about unqualified access
o The actual scoping rules are still a mess

› Integration with C++ type system can be cumbersome: improved
o qt_add_qml_module, declarative type registration

Maintaining large scale QML projects (2024)



› QML Scoping rules difficult to understand
› No C++ API for bindings
› Binding updates done immediately, not batched
› Complicated/Unnecessary versioning system
› C++ based context properties
› Can’t bind to JavaScript properties
› No private properties
› Grouped properties fundamentally broken

Language problems (2019)



› QML Scoping rules difficult to understand: unchanged
› No C++ API for bindings: improved (but not well received)
› Binding updates done immediately, not batched: unchanged

o May get fixed by exposing binding update groups to QML
› Complicated/Unnecessary versioning system: improved
› C++ based context properties: improved

o Context properties are discouraged, but sometimes unavoidable
› Can’t bind to JavaScript properties: unchanged
› No private properties: unchanged
› Grouped properties fundamentally broken: invalid

o Inconsistencies could be fixed, but only with behavior change

Language problems (2024)



› Refactoring tools difficult to implement
› Code completion buggy
› C++ types only visible to tooling when separately declared in .qmltypes
› Context properties and dynamic type registration invisible to tooling
› Grammar ported manually from Qt to Qt Creator

Tooling (2019)



› Refactoring tools difficult to implement: Improved 
o QmlCompiler, QmlDom

› Code completion buggy: Improved via qmlls
› C++ types only visible to tooling when separately declared in .qmltypes: 
o Improved: qmltypes auto-generated by qmltyperegistrar

› Context properties and dynamic type registration invisible to tooling
o Improved: Both are discouraged

› Grammar ported manually from Qt to Qt Creator: unchanged

Tooling (2024)



› QML 3 will be a subset of QML 2
› Qt 6 will support both

› QML 2
› QML 3

› Qt 5 runs QML 3 as QML 2
› Qt 6 will get extra features for QML 3

› compile to C++
› lower memory footprint
› no JavaScript interpretation / JIT compilation necessary
› no garbage collector necessary

Qt 6 and QML 3 (2019)
QML runtime

Bytecode interpreter

QML 
preview

QML 
debugger ...

QML compiler

QML 2 or 
QML 3 to 
bytecode

QML 3 to 
C++

C++ API

QProperty
Meta-
object 

system
...

New in Qt 6In Qt 5 and Qt 6



None of this has happened!

› QML 3 will be a subset of QML 2
› Qt 6 will support both

› QML 2
› QML 3

› Qt 5 runs QML 3 as QML 2
› Qt 6 will get extra features for QML 3

› compile to C++
› lower memory footprint
› no JavaScript interpretation / JIT compilation necessary
› no garbage collector necessary

Qt 6 and QML 3 (2024)
QML runtime

Bytecode interpreter

QML 
preview

QML 
debugger ...

QML compiler

QML 2 or 
QML 3 to 
bytecode

QML 3 to 
C++

C++ API

QProperty
Meta-
object 

system
...

New in Qt 6In Qt 5 and Qt 6



› Make JavaScript / Garbage Collector optional
› Trim down the scripting language, disallow closures, cyclic references
› Avoid most heap allocations
› Use reference counting instead of garbage collection for remaining memory management

› Move Property system to Qt Core
› Properties evaluated on access, not on change
› Avoid redundant evaluation of related properties
› Add C++ API

› QML compiler library
› Compile QML 3 to C++, QML 2 to bytecode
› Improve tooling
› Facilitate QML language server

5 September 2024 © The Qt Company14

Further Qt 6 roadmap (2019)



› Make JavaScript / Garbage Collector optional: unchanged
› Trim down the scripting language, disallow closures, cyclic references
› Avoid most heap allocations
› Use reference counting instead of garbage collection for remaining memory management

› Move Property system to Qt Core: 
› Properties evaluated on access, not on change: invalid
› Avoid redundant evaluation of related properties: unchanged
› Add C++ API: done but not well received

› QML compiler library
› Compile QML 3 to C++, QML 2 to bytecode: improved (qmlcachegen)
› Improve tooling: done
› Facilitate QML language server: done

5 September 2024 © The Qt Company15

Further Qt 6 roadmap (2024)



› Object model / QProperty
› Qt Core

› Item models 
› Own plugin (done)

› Debugging/profiling framework 
› Partly Qt Core

› Compiler and runtime for dynamic QML
› QtQml, not needed at runtime for QML3

› Code Model 
› Own library (links against QtQml)

› QtQuick must not depend on QtQml anymore!
› Split out further things, like Canvas
› Avoid JavaScript-y constructs in C++

5 September 2024 © The Qt Company16

Architecture (2019)



› Object model / QProperty
› Qt Core: done but hardly used!

› Item models 
› Own plugin (done)

› Debugging/profiling framework 
› Partly Qt Core: unchanged

› Compiler and runtime for dynamic QML
› QtQml, not needed at runtime for QML3: unchanged

› Code Model 
› Own library (links against QtQml): done (does not link against QtQml, though)

› QtQuick must not depend on QtQml anymore! unchanged!
› Split out further things, like Canvas
› Avoid JavaScript-y constructs in C++

5 September 2024 © The Qt Company17

Architecture (2024)



Summary

Unchanged

› QML is built on QObject
› QML uses (GC'ed) JavaScript
› Redundant evaluation of properties
› Incomprehensible scoping (and lookup) rules
› No private properties
› Lack of Modularization

o Detaching QtQuick from QtQml
o Splitting QtQml into smaller pieces

Done

› Better module and type system
› qt_add_qml_module
› declarative type registration
› versioning optional

› Partial compilation to C++
› Only simple bindings and functions so far

› QML language server
› And qmllint, qmlformat



QML is built on QObject
o Bad data locality
o Memory overhead
o Memory fragmentation
o Causes value/object type duality
o Single inheritance requires 

interfaces, "extended" types

QML uses JavaScript
o Requires garbage collector
o Introduces weak, insane, third (!) 

type system
o Is hard to analyze/compile ahead 

of time
o Requires value type instances to 

be JavaScript objects!

Fundamental Problems


	Slide 1: QML version ??
	Slide 2: Goals in 2019
	Slide 3: Achieved by 2024
	Slide 4: Performance and memory consumption (2019)
	Slide 5: Performance and memory consumption (2024)
	Slide 6: Maintaining large scale QML projects (2019)
	Slide 7: Maintaining large scale QML projects (2024)
	Slide 8: Language problems (2019)
	Slide 9: Language problems (2024)
	Slide 10: Tooling (2019)
	Slide 11: Tooling (2024)
	Slide 12: Qt 6 and QML 3 (2019)
	Slide 13: Qt 6 and QML 3 (2024)
	Slide 14: Further Qt 6 roadmap (2019) 
	Slide 15: Further Qt 6 roadmap (2024) 
	Slide 16: Architecture (2019)
	Slide 17: Architecture (2024)
	Slide 18: Summary
	Slide 19: Fundamental Problems

