
A Guide for Cross-compiling

QT 5.13.2 For Raspberry Pi 3

WRITTEN BY RONEL JORDAN TCHOULAYEU TIENTCHEU

ABOUT ME

 QT/EMBEDDED SOFTWARE DEVELOPER

 MORE THAN 10 YEARS OF 7 YEARS OF EXPERIENCE WITH THE QT FRAMEWORK

 3 YEARS OF EXPERIENCE WITH EMBEDDED LINUX AND MICROCONTROLLERS

 ANALYST – PROGRAMMER (8 Programming Languages)

 HARDWARE DESIGN EXPERIENCE

Contact: jordanprog@yahoo.fr Linked In : RONEL TCHOULAYEU

+237 655 27 51 09 Github : Jordanprog86

RONEL JORDAN TCHOULAYEU TIENTCHEU

mailto:jordanprog@yahoo.fr

CONTEXT

 Have you ever dreamed to port your Gui Application to embedded Linux devices?

 Are you a c++ or Qt Developer usually working on windows and you want to deploy your

software to Raspberry pi?

 Do you often ask yourself how to create GUI applications for embedded Linux and

especially raspberry pi?

Then this article is for you. We will demonstrate how to port your Qt application on windows to

Linux.

Purpose

 This guide will help you building the Qt5 framework for Raspberry Pi 3 on Windows

 It assumes that you have already installed the Raspbian image in the Raspberry Pi

 You will be able to create applications on windows, and deploy them directly to the Raspberry
with Qt.

 You should also download and install git, as it is required for SSH configuration in Qt

Note: After installing Raspbian, make sure to enable SSH and configure Hostname and password.
The default username is pi.

1- Downloading and Installing Qt 5.13.2

 Download Qt 5.13.2 for windows to this address https://download.qt.io/archive/qt/5.13/5.13.2/

 Select qt-opensource-windows-x86-5.13.2.exe

 After the Download, Launch the installer

https://download.qt.io/archive/qt/5.13/5.13.2/
https://download.qt.io/archive/qt/5.13/5.13.2/qt-opensource-windows-x86-5.13.2.exe

Downloading and Installing Qt 5.13.2

Downloading and Installing Qt 5.13.2

o Make sure you

have selected

all the Developer

Tools as well as

the sources.

o To maximize the

modules we will

have, It may also

be good to

select all

modules except

UWP platform

Downloading and Installing Qt 5.13.2

o Accept License

Agreement and

start to Install

o When it has finished

to install, go to

C:\Qt\Qt5.13.2\vcr

edist\ and install

vcredits.

2- Downloading of Toolchains

We also need toolchains to compile Qt for our target environment, which is Linux in our case.

 Raspberry Toolchain : https://gnutoolchains.com/raspberry/ GCC version 8.3.0

 Mingw32 Toolchain : https://gnutoolchains.com/mingw32/ GCC version 4.8.1

 Mingw64 Toolchain : https://gnutoolchains.com/mingw64/ GCC version 12.2.0

https://gnutoolchains.com/raspberry/
https://gnutoolchains.com/mingw32/
https://gnutoolchains.com/mingw64/

3-Installing Toolchains

o Just accept the license

agreement and install

o After the installation make sure it

is added to path

Installing toolchains

o Do the same for

mingw64

Installing Toolchains

The benefits of this version of

Mingw is that msys is included

It is a command line tool similar

to linux command line tools.

Therefore, you will be able to

easily run the configure script

from it.

4-Installing Python

 Download and install both python 2.7.5 or later to this address

https://python.org/downloads/

 After the installation, make sure it is added to PATH

 Python is required to build web engine

https://python.org/downloads/

5-Synchronizing Sysroot

 In this step, we need to ensure that our local toolchain includes all the libraries and headers that
the raspberry has. If not, some platform plugins will not be available like EGLFS.

 Download and install SmarTTY https://sysprogs.com/SmarTTY/download

 We will synchronize these remote directories:

/lib

/usr/include

/usr/lib With local directory C:\sysgcc\Raspberry\arm-linux-gnueabihf\sysroot

/usr/local/include/

/usr/local/lib

https://sysprogs.com/SmarTTY/download

Synchronizing Sysroot

 Connect your Pc and raspberry pi through a wifi connexion

 Launch SmarTTY and create a connection to the Raspberry with its Ip address. This time,

the Hostname is the pi ip Address

 Select the smart terminal because it is easier to use

 Download each directory to the local sysroot path

 Then end the connection and go to the next step.

Synchronizing Sysroot

Synchronizing Sysroot

Select SCP then Download a directory

Download each required directory

Synchronizing Sysroot

 We want to enable EGLFS support for Raspberry pi.By default, its libraries should be

located in the opt/lib folder of the building host.

 Go to C:\SysGCC\raspberry\arm-linux-gnueabihf\sysroot\arm-linux-gnueabihf and copy

libEGL.so.1 and libGLESv2.so.2 to C:\SysGCC\raspberry\arm-linux-

gnueabihf\sysroot\opt\vc\lib and C:\SysGCC\raspberry\arm-linux-gnueabihf\sysroot

 Rename those files to libEGL.so and libGLESv2.so

 In the opt\vc\lib folder copy and rename libEGL_static.a to libEGL.a and

libGLESv2_static.a to libGLESv2.a

6-Modify qmake.conf files

 Create a new folder called qtraspberry

 Go to path_of_installed_qt\Qt5.13.2\5.13.2 and copy Src folder to qtraspberry

 Go to qtraspberry\Src and open the file \qtbase\mkspecs\linux-arm-gnueabi-

g++\qmake.conf in a textEditor

 Replace arm-linux-gnueabi- with arm-linux-gnueabihf- in the whole file

 Go to \qtbase\mkspecs\win32-g++\qmake.conf and add -U__STRICT_ANSI__ to

CXXFLAGS

 Results should be like this:

Modify qmake.conf files

Modifications of

qmake.conf in

linux-arm-gnueabi-

g++ folder

Modify qmake.conf files

Modifications of

qmake.conf in

win32-g++ folder

7-Building Qt5.13.2 for Raspberry Pi 3

 Navigate to qtraspberry folder and create a new folder called build

 Enter in the build folder.Then launch msys.bat. It is located in the folder
c:\SysGCC\MinGW32\msys\1.0\msys.bat

 Navigate to build folder with msys : cd /c/work/qtraspberry/build

 Copy and run the build script :

../Src/configure -platform win32-g++ -device-option CROSS_COMPILE=arm-linux-gnueabihf- -
release -opengl es2 -device linux-rasp-pi3-g++ -sysroot C:/SysGCC/Raspberry/arm-linux-

gnueabihf/sysroot -opensource -confirm-license -I C:/SysGCC/raspberry/arm-linux-
gnueabihf/sysroot/opt/vc/include -L C:/SysGCC/raspberry/arm-linux-gnueabihf/sysroot/opt/vc/lib

 In the build script, mentioning both device and xplatform is not supported for this version, hence
we removed xplatform option

Building Qt5.13.2 for Raspberry Pi 3

Building Qt5.13.2 for Raspberry Pi 3

 When the configuration is successful you should see

Building Qt5.13.2 for Raspberry Pi 3

 You can now run gmake && gmake install or make && make install

 Otherwise, you can firstly run gmake or make, and after the build, gmake install or make

install

 You might encounter errors while building qtscript. If so, restart gmake.exe - i

 The i option is for ignoring errors

 After the build you will see as follows. You can finally Run gmake.exe install

8- COPY GENERATED BUILD TO RASPBERRY

 After the installation, qt build will be available in C:\SysGCC\raspberry\arm-linux-

gnueabihf\sysroot\usr\local\Qt-5.13.2

 You will need to copy the whole folder to remote /usr/local in Raspberry pi.

 Before that you will need to download fonts in dejavu-fonts.github.io , and copy them to

C:\SysGCC\raspberry\arm-linux-gnueabihf\sysroot\usr\local\Qt-5.13.2\lib\fonts as Qt

does not deploy fonts.

 When done, copy the Qt folder to /usr/local in Raspberry pi. The easiest way to achieve

that would be to transfer it firstly in a USB key , then launch file manager as root with sudo

pcmanfm

 Finally, you can paste qt build in the correct directory without root permission.

9-CREATE A KIT FOR RASPBERRY IN QT

 Open Qt Creator and go to Tools->Options->kits->Qt Version.

 Click on Add an navigate to C:\SysGCC\raspberry\arm-linux-

gnueabihf\sysroot\usr\local\Qt-5.13.2\bin and select qmake.exe

 Go to kits and select Add. Give it the name Raspberry pi. In Device type, select Generic

Linux Device

 Concerning the compilers, select GCC (c:\SysGcc\raspberry\bin)

 At Qt version select the version you previously created.

 Finally apply the changes and go to devices.

9-CREATE A KIT FOR RASPBERRY IN QT

10-ADDING A GENERIC LINUX DEVICE

 Select Generic Linux Device, then click on add

 Give a name to the device, enter You Pi’s IP Address, And the username (generally pi)

 Now in SSH Key Configuration Generate And save the key, then deploy it to your remote

raspberry pi

 After the deployment you can test your device. When the device test is successful, Go

back to kits, select your raspberry kit and change the device to the one you just added.

 You can now create projects and test them

10-ADDING A GENERIC LINUX DEVICE

11-TESTING A FIRST PROJECT

 Create a new project

 Select the Raspberry kit especially release option

 In the project file change target.path to /home/pi

 Compile and Run the project file.Qt will require you to deploy some libraries

 You will see them in your local C:\SysGCC\raspberry\arm-linux-

gnueabihf\sysroot\lib\arm-linux-gnueabihf directory. Upload them to remote

/usr/lib/arm-linux-gnueabihf

11-TESTING A FIRST PROJECT

 BY default Qt uses EGLFS as plugin to launch Apps.However, EGLFS has not yet been

enabled therefore, you will face an Error when Running.

 You can actively start your app with linuxfb plugin by adding this command in Qt

- Platform linuxfb:fb=“/dev/fb0”

12-ENABLING EGLFS

 In your local sysroot copy the vc folder in \opt\ and paste it in remote /opt directory

 Open the shell and navigate to /opt/vc/lib

 Create symlinks of EGLFS libraries:

sudo ln –s libbrcmEGL.so libEGL.so.1

sudo ln –s libbrcmGLESv2.so libGLESv2.so.2

export LD_LIBRARY_PATH=/opt/vc/lib

 Go to /home/pi , where your program is , and start ldd your_program.

12-ENABLING EGLFS

12-ENABLING EGLFS

As soon as you see libGLESv2.so.2 and libbrcmEGL.so in the ldd result, EGLFS is enabled

THANK YOU!

